
Missing Data Mechanisms
Utrecht UniversityWinter School: Missing Data in R

Kyle M. Lang

Department of Methodology & Statistics
Utrecht University



Outline

Definitions

Consequences

Testing

2 of 20



What are Missing Data?

Missing data are empty cells in a dataset where there should be
observed values.
• The missing cells correspond to true population values, but we

haven’t observed those values.

Not every empty cell is a missing datum.
• Quality-of-life ratings for dead patients in a mortality study
• Firm profitability after the company goes out of business
• Self-reported severity of menstrual cramping for men
• Empty blocks of data following “gateway” items
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A Little Notation

Y := An N × PMatrix of Arbitrary Data

Ymis := The missing part of Y

Yobs := The observed part of Y

R := An N × P response matrix

M := An N × Pmissingness matrix

The R andMmatrices are complementary.
• rnp = 1means ynp is observed;mnp = 1means ynp is missing.
• rnp = 0means ynp is missing;mnp = 0means ynp is observed.
• Mp is the missingness of Yp.
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Missing Data Mechanisms

Missing Completely at Random (MCAR)
• P(R|Ymis, Yobs) = P(R)
• Missingness is unrelated to any study variables.

Missing at Random (MAR)
• P(R|Ymis, Yobs) = P(R|Yobs)
• Missingness is related to only the observed parts of study

variables.

Missing not at Random (MNAR)
• P(R|Ymis, Yobs) ≠ P(R|Yobs)
• Missingness is related to the unobserved parts of study

variables.
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Simulate Some Toy Data

library(mvtnorm); library(dplyr); library(magrittr)

set.seed(235711)

nObs <- 5000 # Sample Size

pm <- 0.3 # Proportion Missing

sigma <- matrix(c(1.0, 0.5, 0.3,

0.5, 1.0, 0.0,

0.3, 0.0, 1.0),

ncol = 3)

dat0 <- rmvnorm(nObs, c(0, 0, 0), sigma) %>% data.frame()

colnames(dat0) <- c("x", "y", "z")

dat0 %$% cor(y, x)

[1] 0.4997145
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MCAR Example

## Simulate MCAR Missingness:

m <- sample(1:nObs, size = pm * nObs)

## Impose MCAR missing on Y:

mcarData <- dat0

mcarData[m, "y"] <- NA

## Check the correlation between X & Y:

mcarData %$% cor(y, x, use = "pairwise")

[1] 0.5195767
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MCAR Example
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MCAR Example
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MAR Example

## Simulate MAR Missingness:

m <- with(dat0, x < quantile(x, probs = pm))

## Impose MAR missing on Y:

marData <- dat0

marData[m, "y"] <- NA

## Check the correlation between X & Y:

marData %$% cor(y, x, use = "pairwise")

[1] 0.3822143
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MAR Example
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MAR Example
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MNAR Example

## Simulate MNAR Missingness:

m <- with(dat0, y < quantile(y, probs = pm))

## Impose MNAR missing on Y:

mnarData <- dat0

mnarData[m, "y"] <- NA

## Check the correlation between X & Y:

mnarData %$% cor(y, x, use = "pairwise")

[1] 0.3902962
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MNAR Example
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MNAR Example
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Crucial Nuance
In our previous MAR example, ignoring the predictor of
missingness actually produces Indirect MNAR.

Question: What happens if we ignore the predictor of
missingness, but that predictor is independent of our study
variables?

m <- with(dat0, z < quantile(z, probs = pm))

mcarData2 <- dat0

mcarData2[m, "y"] <- NA

mcarData2 %$% cor(y, x, use = "pairwise")

[1] 0.5118075

Answer: We get back to MCAR :)
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Crucial Nuance

The missing data mechanisms are not simply characteristics of an
incomplete dataset; we also need to account for the analysis.
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Testing the Missing Data Mechanism

We cannot fully test the MAR or MNAR assumptions.
• To do so would require knowing the values of the missing data.
• We can find observed predictors of missingness.

◦ Use classification algorithms to predict missingness from Yobs.
◦ We can never know that we have discovered all MAR predictors.

• In practice, MAR and MNAR live on the ends of a continuum.
◦ Our missing data problem exists at some unknown point along

this continuum.
◦ We can do a lot to nudge our problem towards the MAR side.
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Testing the Missing Data Mechanism

We can (partially) test the MCAR assumption.
• With MCAR, the missing data and the observed data should

have the same distribution.
• We can test for MCAR by testing the distributions of auxiliary
variables, Z.
◦ Use a t-test to compare the subset of Zp that corresponds to Ymis

to the subset corresponding to Yobs.
◦ The Little (1988) MCAR test is a multivariate version of this.

These procedures actually test if the data are observed completely
at random.
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