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Imputation is Just Prediction*

Imputation is nothing more than a type of prediction.
1. Train a model on the observed parts of the data, Yobs.

◦ Train the imputation model.
2. Predict the missing values, Ymis.

◦ Generate imputations.
3. Replace the missing values with these predictions.

◦ Impute the missing data.
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*Levels of UncertaintyModeling
van Buuren (2018) provides a very useful classification of different
imputation methods:

1. Simple Prediction
◦ The missing data are naively filled with predicted values from some

regression equation.
◦ All uncertainty is ignored.

2. Prediction + Noise
◦ A random residual error is added to each predicted value to create the

imputations.
◦ Only uncertainty in the predicted values is modeled.
◦ The imputation model itself is assumed to be correct and error-free.

3. Prediction + Noise + Model Error
◦ Uncertainty in the imputation model itself is also modeled.
◦ Only way to get fully proper imputations in the sense of Rubin (1987).
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Simulate Some Toy Data

library(mvtnorm)

library(dplyr)

nObs <- 1000 # Sample Size

pm <- 0.3 # Proportion Missing

sigma <- matrix(c(1.0, 0.5, 0.5, 1.0), ncol = 2)

dat0 <- rmvnorm(nObs, c(0, 0), sigma) %>% as.data.frame()

colnames(dat0) <- c("y", "x")
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Simulate Some Toy Data

## Impose MAR Nonresponse:

dat1 <- dat0

mVec <- with(dat1, x < quantile(x, probs = pm))

dat1[mVec, "y"] <- NA

## Subset the data:

yMis <- dat1[mVec, ]

yObs <- dat1[!mVec, ]
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Look at the Data

head(dat0, n = 5) %>% round(3)

y x

1 -0.961 -0.912

2 1.467 0.667

3 -0.361 -0.017

4 0.928 -0.447

5 -2.292 -2.678
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Look at the Data

head(dat1, n = 5) %>% round(3)

y x

1 NA -0.912

2 1.467 0.667

3 -0.361 -0.017

4 0.928 -0.447

5 NA -2.678
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Expected Imputation Model Parameters

lsFit <- lm(y ~ x, data = yObs)

beta <- coef(lsFit)

sigma <- summary(lsFit)$sigma

as.matrix(beta)

[,1]

(Intercept) -0.08610404

x 0.52564595

sigma

[1] 0.9080502
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Conditional Mean Substitution

## Generate imputations:

imps <- beta[1] + beta[2] * yMis$x

## Fill missing cells in Y:

dat1[mVec, "y"] <- imps

head(dat1, n = 5) %>% round(3)

y x

1 -0.566 -0.912

2 1.467 0.667

3 -0.361 -0.017

4 0.928 -0.447

5 -1.494 -2.678
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Stochastic Regression Imputation

## Generate imputations:

imps <- imps +

rnorm(nrow(yMis), 0, sigma)

## Fill missing cells in Y:

dat1[mVec, "y"] <- imps

head(dat1, n = 5) %>% round(3)

y x

1 -0.885 -0.912

2 1.467 0.667

3 -0.361 -0.017

4 0.928 -0.447

5 -0.390 -2.678
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Setting Up Proper MI

Proper MI also models uncertainty in the regression coefficients used to
create the imputations.
• A different set of of coefficients is randomly sampled (using Bayesian

simulation) to create each of theM imputations.

• The tricky part about implemented MI is deriving the distributions
from which to sample these coefficients.

Our imputation model is simply a linear regression model:

Y = X𝛽 + 𝜀

To fully account for model uncertainty, we need to randomly sample
both 𝛽 and var(𝜀) = 𝜎2.
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Visualizing MI

Use Bayesian simulation to estimate posterior distributions for the
imputation model parameters:
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Visualizing MI

Recall the incomplete data from the
single imputation examples.
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Visualizing MI

Sample values of 𝛽0 and 𝛽1:
• 𝛽0 = −0.105
• 𝛽1 = 0.56

Define the predicted best-fit line:
Ŷmis = −0.105 + 0.56Xmis
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Visualizing MI

Sample a value of 𝜎2:
• 𝜎2 = 0.849

Generate imputations using the
same procedure described in Single
Stochastic Regression Imputation:

Yimp = Ŷmis + 𝜀

𝜀 ∼ N(0,0.849)
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Visualizing MI

Sample values of 𝛽0 and 𝛽1:
• 𝛽0 = −0.053
• 𝛽1 = 0.419

Define the predicted best-fit line:
Ŷmis = −0.053 + 0.419Xmis
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Visualizing MI

Sample a value of 𝜎2:
• 𝜎2 = 0.888

Generate imputations using the
same procedure described in Single
Stochastic Regression Imputation:

Yimp = Ŷmis + 𝜀

𝜀 ∼ N(0,0.888)
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Visualizing MI

Sample values of 𝛽0 and 𝛽1:
• 𝛽0 = −0.093
• 𝛽1 = 0.565

Define the predicted best-fit line:
Ŷmis = −0.093 + 0.565Xmis
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Visualizing MI

Sample a value of 𝜎2:
• 𝜎2 = 0.819

Generate imputations using the
same procedure described in Single
Stochastic Regression Imputation:

Yimp = Ŷmis + 𝜀

𝜀 ∼ N(0,0.819)
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MI-Based Analysis
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DoingMI-Based Analysis

An MI-based data analysis consists of three phases:

1. The imputation phase
◦ Replace missing values withM plausible estimates.
◦ ProduceM completed datasets.

2. The analysis phase
◦ EstimateM replicates of your analysis model.
◦ Fit the same model to each of theM datasets from Step 1.

3. The pooling phase
◦ Combine theM sets of parameter estimates and standard errors from

Step 2 into a single set of MI estimates.
◦ Use these pooled parameter estimates and standard errors for inference.
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MI-Based Analysis

Incomplete 

Dataset
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MI-Based Analysis
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MI-Based Analysis
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Pooling MI Estimates

Rubin (1987) formulated a simple set of pooling rules for MI estimates.

• The MI point estimate of some interesting quantity, Q∗, is simply the
mean of theM estimates, {Q̂m}:

Q∗ = 1
M

M∑︁
m=1
Q̂m
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Pooling MI Estimates

The MI variability estimate, T, is a slightly more complex entity.

• A weighted sum of the within-imputation variance,W , and the
between-imputation variance, B.

W =
1
M

M∑︁
m=1
ŜE
2
Q,m

B =
1

M − 1

M∑︁
m=1

(
Q̂m − Q∗

)2
T =W +

(
1 +M−1) B

=W + B + BM
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Inference with MI Estimates

After computing Q∗ and T, we combine them in the usual way to get test
statistics and confidence intervals.

t = Q
∗ − Q0√
T

CI = Q∗ ± tcrit
√
T

We must take care with our df, though.

df = (M − 1)
[
1 + W

(1 +M−1) B

]2
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Fraction of Missing Information

Earlier today, we briefly discussed a very desirable measure of
nonresponse: fraction of missing information (FMI).

FMI =
r + 2

(df+3)
r + 1 ≈ (1 +M−1)B

(1 +M−1)B +W → B
B +W

where

r = (1 +M−1)B
W

The FMI gives us a sense of how much the missing data (and their
treatment) have influence our parameter estimates.

• We should report the FMI for an estimated parameter along with
other ancillary statistics (e.g., t-tests, p-values, effect sizes, etc.).
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Special Pooling Considerations
The Rubin (1987) pooling rules only hold when the parameter of interest,
Q, follows an approximately normal sampling distribution.

• For substantially non-normal parameters, we may want to transform
before pooling and back-transform the pooled estimate.

The following table, reproduced from van Buuren (2018), shows some
recommended transformations.

Statistic Transformation Source
Correlation Fisher’s z Schafer (1997)
Odds ratio Logarithm Agresti (2013)
Relative risk Logarithm Agresti (2013)
Hazard ratio Logarithm Marshall et al. (2009)
R2 Fisher’s z on square root Harel (2009)
Survival probabilities Complementary log-log Marshall et al. (2009)
Survival distribution Logarithm Marshall et al. (2009)
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