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Factor analysis

Welcome!



Factor Analysis

• Exploratory Factor Analysis (EFA) and Principal
Components Analysis (PCA)

• Two related techniques

• Both often described as types of factor analysis

– In R: use the package “psych”
• install.packages(“psych”); library(psych)

• Functions: principal()and fa()

– Controversy discussed in Preacher & McCallum

– Confirmatory Factor Analysis (CFA) next week



EFA and PCA

• Statistical techniques in which researchers want 
to know, very generally:

Given a set of observed variables, how can I 
transform them to make a smaller set, while still
retaining as much information as possible

– As much as possible, similar variables in my original
set should relate to the same variable in my new set

– E.g. If I have 10, 50 or 100 variables, how can I make 2, 
3 or 4 variables that capture as much as possible

– Data-driven approaches!



When is it useful?

1. Develop measurement tools or tests for
latent variables

– Personality, Intelligence, Depression

2. Investigate the dimensions of test items

3. Data reduction

– Also called “dimension reduction”

– E.g., solves multicollinearity in linear regression
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In Practice: Developing a 
measurement scale

1. Create a questionnaire with a very large number
of items about a topic of interest

– Student aptitude: school history, family history, health, 
personality, previous grades

2. Give questionnaire to random sample
3. Derive factors

– E.g. Intelligence, Work ethic, Independence

4. Delete or add items depending on factor loadings
5. Repeat steps 2 to 4
6. Test validity of factors

– E.g. predict future grades



Difference between PCA and EFA

• Goal:
– PCA: reduce correlated observed variables to a smaller set of 

independent composite variables.
• Data reduction!
• Components describe the total variance in the dataset

– (E)FA: assume or wish to test a theoretical model of latent factors 
causing observed variables.

• Model says that observed variables covary because all variables are caused by 
an unobserved factor

• Don’t know exactly how many factors or which factors cause which variables –
Exploratory Factor Analysis (EFA)

• Strong theory on latent structure that you want to confirm/disconfirm –
Confirmatory Factor analysis

– PCA rotates axes to explain as much variance as possible,
EFA models the covariance matrix. 



Variance and Covariance

Sample Covariances (Girls) 

 
wordmean sentence paragrap lozenges cubes visperc 

wordmean 68,260 
     

sentence 28,845 25,197 
    

paragrap 21,718 12,864 12,516 
   

lozenges 23,947 13,228 9,056 61,726 
  

cubes 6,840 4,036 3,356 17,416 20,265 
 

visperc 13,037 12,645 8,335 26,531 14,931 47,175 

 

or 

Sample Correlations (Girls) 

 
wordmean sentence paragrap lozenges cubes visperc 

wordmean 1,000 
     

sentence ,696 1,000 
    

paragrap ,743 ,724 1,000 
   

lozenges ,369 ,335 ,326 1,000 
  

cubes ,184 ,179 ,211 ,492 1,000 
 

visperc ,230 ,367 ,343 ,492 ,483 1,000 

 

PCA EFA

PCA  analyzes variance

EFA analyzes covariance
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Variance and Covariance

𝑌1 𝑌2 𝑇𝑜𝑡𝑎𝑙
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
𝑌1 𝑎𝑛𝑑 𝑌2



Exploratory
Factor Analysis

Principal
Components

Analysis



PCA: Summarize variance

• For n variables, you obtain n components

• The first component explains most variance, 
second explains second-most, etc. 

• Each component is 
uncorrelated with all
others
(but see Rotation)

• Usually we retain the
first few components that eplain most
variance: Data reduction



PCA - Visual example

• http://setosa.io/ev/principal-component-
analysis/

http://setosa.io/ev/principal-component-analysis/
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PCA
𝐶1

𝐶2



EFA : Explaining covariance

• For n variables, estimate max n new factors
– Usually less than n

• I create these so that:
– The first factor

explains most covariance, 
the second explains second-most, etc. 

– Each factor is 
uncorrelated with other
factors ** (see Rotation)

– As much as possible
each observed variable
only relates to
one factor



PCA and EFA
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PCA: Analyse Variance
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EFA: Analyse Co-variance

𝑌3

𝑌2𝑌1
𝑌4

𝑌5

𝑌6



PCA –Example 2

1. I always wear a seatbelt

2. I do not think before I act

3. I would never make a long journey in a sailing boat

4. I am an impulsive person

5. I would like to jump out of an airplane with a parachute



Example

• Five questions

• We observe these 
correlations
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Example

1. I always wear a seatbelt

2. I do not think before I act

3. I would never make a long journey in a sailing boat

4. I am an impulsive person

5. I would like to jump out of an airplane with a parachute

Impulsive

Safety-Conscious



BOX DIAGRAMS OF PCA AND FA



34

Quick Revision: Path Diagrams

Observed variable
(or Indicator)

Latent (unmeasured) variable 
(or Factor)

Regression
(Theoretical) Causal effect *
Direct Effect * 

Covariance
(no causal hypothesis)



Quick Revision: Interpretation of 
parameters

• Direct effects, b,  (X→ Y) as regression coefficients

– If X goes up with 1 point, y is expected to go up with b
points (controlling for other predictors). 

– If X goes up with 1 SD, y is expected to go up with b SD 
(controlling for other predictors). 

• Factor loadings are direct effects from a factor to an 
indicator

• Covariances (unstandardized) and correlations 
(standardized)

• Variances and residual variances
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EFA
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Summary PCA vs. EFA

Principal Components Analysis (PCA) Exploratory Factor Analysis (EFA)

Components Summarize Variance Factors explain Covariance

Not really a model:
• Transformation of the data 
• No Model Fit

Model:
• Some variance is interesting

(covariance), some is error
• Fit indices possible

Dimension Reduction Scale construction

library(psych)
principal(data, nfactors = n)

library(psych)
fa(data, nfactors = n)

Extraction method: Principal
Components

Extraction method: OLS, can also do 
“ml” (which SPSS uses)

In large samples, with large number of correlated variables, practical 
differences are often small 



Break



Steps to take

• Analysis requires decisions
– 1.Extraction method

• PCA = “Principal Components”

• EFA = “OLS/Maximum Likelihood”

– 2.Number of factors

– 3.Rotation method

– 4.(Factor scores)



Example 

• Six observed variables (intelligence 
tests)
– visual perception, cubes, lozenges,
– paragraph, sentence, word meaning

• 2 factors
• Simulated data spatial

visperc

cubes

lozenges

wordmean

paragrap

sentence

err_v

err_c

err_l

err_p

err_s

err_w

verbal

1

1

1

1

1

1

1

1



1. Components or Factors?
principal(df, nfactors = 2)

RC1  RC2  h2   u2 com

visperc 0.81 0.08 0.66 0.34 1.0

cubes    0.77 0.07 0.59 0.41 1.0

lozenges 0.78 0.13 0.62 0.38 1.1

paragrap 0.17 0.79 0.64 0.36 1.1

sentence 0.11 0.78 0.62 0.38 1.0

wordmean 0.07 0.74 0.56 0.44 1.0

RC1  RC2

SS loadings           1.90 1.80

Proportion Var        0.32 0.30

Cumulative Var        0.32 0.62

Proportion Explained  0.51 0.49

Cumulative Proportion 0.51 1.00



1. Components or Factors?
fa(df, nfactors = 2)

MR1   MR2  h2   u2 com

visperc 0.74 -0.03 0.53 0.47   1

cubes 0.60  0.01 0.36 0.64   1

lozenges 0.65  0.04 0.44 0.56   1

paragrap 0.01  0.72 0.52 0.48   1

sentence 0.01  0.65 0.42 0.58   1

wordmean 0.00  0.55 0.31 0.69   1

MR1  MR2

SS loadings           1.33 1.25

Proportion Var        0.22 0.21

Cumulative Var        0.22 0.43

Proportion Explained  0.52 0.48

Cumulative Proportion 0.52 1.00

With factor correlations of 

MR1  MR2

MR1 1.00 0.38

MR2 0.38 1.00



2. EFA: How Many Factors?

• If (proto) theory predicts k factors, try k factors

• Parallel analysis

• Guttman-Kaiser criterion (Eigenvalue 1) best with small 
number of reliable variables

• Scree plot best with large number of unreliable variables

• Pick the solution that makes most interpretative sense



2. EFA: How Many Factors?

• Guttman-Kaiser criterion (Eigenvalue 1) best with small 
number of reliable variables

• Eigenvalues relate to how much of the total variance each
component/factor accounts for

• First explains most, second explains second-most, etc.

•
𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠
= 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑓𝑎𝑐𝑡𝑜𝑟

> res <- principal(df, nfactors = 5) 
> res$values
[1] 2.34 1.35 0.67 0.60 0.53 0.48
> res$values > 1 
[1] TRUE TRUE FALSE FALSE FALSE FALSE

> 



2. EFA: How Many Factors?

• Scree plot best with large number of unreliable variables
• Pick the number of factors “above the elbow”

> plot(1:6, res$values, type = "b") 



2. EFA: How Many Factors?

• Scree plot best with large number of unreliable variables
• Pick the number of factors “above the elbow”

> plot(1:6, res$values, type = "b") 



2. EFA: How Many Factors?

• Parallel Analysis (Horn, 1965)

> fa.parallel(df)
Parallel analysis suggests that 
the number of factors = 2 and 
the number of components = 2 



2. EFA: How Many Factors?

• Pick the solution that makes most sense wrt interpretation

• If theory predicts k factors, try k factors

• Try out different numbers of factor solutions
• Sometimes different rules-of-thumb give different solutions

• Look at the factor loadings

• Pick the solution which gives you meaningful
factors/components



3. Factor Rotation

Reading question 5: what is 

the purpose of factor rotation?

The procedure of rotating the 

factor axes makes sure items 

load as much on only one 

factor as possible. There are 

two methods: Orthogonal 

rotation, in which two latent 

factors are not allowed to 

correlate (i.e. the axes 

describe a 90 degree angle), 

and oblique (oblimin or 

promax) rotation, in which the 

factors are allowed to 

correlate. 

Oblique rotation: factors rotate to 

minimize distance between items and 

factor (oblique)

Factors are correlated!

Orthogonal rotation:

Factors rotate, but 

‘angle’ is always 90 

degrees. Factors are 

not correlated!



Orthogonal Rotation 1
𝑌1

𝑌2



Orthogonal Rotation 2
𝐶1

𝐶2



Oblique Rotation 1
𝑌1

𝑌2



Oblique rotation 2
𝑌1

𝑌2



3. Factor rotation

• Orthogonal: uncorrelated factors
– Varimax
– Simple
– Interpretation may be easier
– Factor loadings show up in the Factor Matrix

• Oblique: correlated factors
– Promax, Oblimin
– More realistic
– Easier to get items to load on only one factor
– Factor loadings show up in the Pattern Matrix



Varimax vs promax

Rotated Factor Matrixa

.097 .700

.097 .700

.097 .700

.700 .097

.700 .097

.700 .097

item1

item2

item3

item4

item5

item6

1 2

Factor

Extraction Method: Maximum Likelihood. 

Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 

Pattern Matrixa

.000 .707

.000 .707

.000 .707

.707 .000

.707 .000

.707 .000

item1

item2

item3

item4

item5

item6

1 2

Factor

Extraction Method: Maximum Likelihood. 

Rotation Method: Promax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 



4. Factor scores

• Useful to save the factor scores:
fa(df, nfactors = 2,

scores = “regression”)

– Multiplication of item scores:
sum(individual itemscore * factor loading)
Three ways: “regression”, “Anderson” or “Bartlett”

- Small difference

- Use these factors as observed variables in your
analysis

- Ignores measurement error

- Not needed if you continue with SEM!



4. Factor scores

> res <- fa(df, nfactors = 2, scores = "Bartlett") 
> head(res$scores)

MR1 MR2 
[1,] -0.5609899 -0.03047855 
[2,] 0.5132644 1.29435355 
[3,] 0.2444246 -1.19983489 
[4,] -0.8724184 1.30067344 
[5,] -0.1687548 1.02015701 
[6,] 1.1181263 -0.51572749



EFA: Optimal decisions and defaults

Decision about Optimal Default

Extraction Theory: 
• Factors 
Data reduction: 
• Components

fa(): 
• Factors
principal(): 
• Components

# Factors Theory
Parallel analysis

Rotation Oblique fa(): 
• oblimin
principal(): 
• Varimax

Factor scores Bartlett fa(): 
• scores = 

“regression”
principal(): 
• method = 

“regression”



Example EFA

• Allen & Mayers (1996) three part model of 
commitment 

• Affective commitment

– 5 items

• Continuance commitment

– 5 items

• Normative commitment

– 4 items



Example

Think about (and report)

– Extraction method

– Number of factors

– Rotation method



Number of factors
> res <- fa(df, nfactors = 6) 
> res 
Factor Analysis using method =  minres
Call: fa(r = df, nfactors = 6)
Standardized loadings (pattern matrix) based upon correlation matrix
…

MR1  MR2  MR5  MR4  MR3  MR6
SS loadings           2.87 1.64 1.37 1.26 1.28 0.65
Proportion Var        0.20 0.12 0.10 0.09 0.09 0.05
Cumulative Var        0.20 0.32 0.42 0.51 0.60 0.65
Proportion Explained  0.32 0.18 0.15 0.14 0.14 0.07
Cumulative Proportion 0.32 0.50 0.65 0.79 0.93 1.00

> res$values
[1]  4.21663707  2.23703890  1.23475959  0.49065841  0.44348134  

0.44266071  0.11342196  0.05770514  0.03241050
[10]  0.01736304 -0.01664042 -0.03138805 -0.06975776 -0.10589982



Number of factors
> fa.parallel(df) 
Parallel analysis suggests that the number of factors = 3 and the number of components = 3 



Rotated factor loadings
> res <- fa(df, nfactors = 3)
> res
Factor Analysis using method =  minres
Call: fa(r = df, nfactors = 3)
Standardized loadings (pattern matrix) based upon correlation matrix

MR1   MR3   MR2   h2   u2 com
A1  0.51  0.19  0.03 0.36 0.64 1.3
A2  0.77  0.06 -0.21 0.67 0.33 1.2
A3  0.86 -0.01  0.01 0.73 0.27 1.0
A4  0.72  0.11 -0.08 0.59 0.41 1.1
A5  0.85 -0.09  0.17 0.69 0.31 1.1
C1  0.06  0.31  0.60 0.56 0.44 1.5
C2  0.08  0.12  0.52 0.32 0.68 1.2
C3 -0.17 -0.06  0.72 0.54 0.46 1.1
C4  0.19 -0.02  0.32 0.13 0.87 1.7
C5  0.08 -0.04  0.65 0.42 0.58 1.0
N1  0.16  0.65  0.05 0.55 0.45 1.1
N2  0.09  0.67  0.00 0.50 0.50 1.0
N3 -0.12  0.90  0.00 0.75 0.25 1.0
N4  0.08  0.71  0.04 0.57 0.43 1.0

With factor correlations of 
MR1  MR3   MR2

MR1  1.00 0.34 -0.03
MR3  0.34 1.00  0.25
MR2 -0.03 0.25  1.00



Typical step-by-step procedure for 
assessing quality of measurement?

• 1. check data -> outliers, missing data etc.

• 2. check correlations

• 3. More than 1 factor/component? 

• 4. include only those items that form a scale

• 5. compute reliability (Cronbach’s alpha) of indicators for 
every factor using psych::alpha()


