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Mediation vs. Moderation

What do we mean by mediation and moderation?

Mediation and moderation are types of hypotheses, not statistical
methods or models.
• Mediation tells us how one variable influences another.

• Moderation tells us when one variable influences another.
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Contextualizing Example

Say we wish to explore the process underlying exercise habits.

Our first task is to operationalize “exercise habits”
• DV: Hours per week spent in vigorous exercise (exerciseAmount).

We may initial ask: what predicts devoting more time to exercise?
• IV: Concerns about negative health outcomes (healthConcerns).
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Focal Effect Only

The healthConcerns→ exerciseAmount relation is our focal effect

Health 

Concerns

Amount of 

Exercise

• Mediation and moderation both attempt to describe the focal effect
in more detail.

• We always begin by hypothesizing a focal effect.
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The Mediation Hypothesis
A mediation analysis will attempt to describe how health concerns affect
amount of exercise.

• The how is operationalized in terms of intermediary variables.

• Mediator: Motivation to improve health (motivation).

Health 
Concerns

Amount of 
Exercise

Motivation to 
Improve 
Health
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Moderation Hypothesis
A moderation hypothesis will attempt to describe when health concerns
affect amount of exercise.

• The when is operationalized in terms of interactions between the
focal predictor and contextualizing variables

• Moderator: Sense of personal agency relating to physical health
(agency).

Health 
Concerns

Amount of 
Exercise

Feeling of 
Personal 
Agency
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Path Diagrams
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Necessary Equations

To get all the pieces of the preceding diagram using OLS regression, we’ll
need to fit three separate models.

Y = i1 + cX + e1 (1)
Y = i2 + c′X + bM + e2 (2)
M = i3 + aX + e3 (3)

• Equation 1 gives us the total effect (c).

• Equation 2 gives us the direct effect (c′) and the partial effect of the
mediator on the outcome (b).

• Equation 3 gives us the effect of the input on the outcome (a).
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Two Measures of Indirect Effect

Indirect effects can be quantified in two different ways:

IEdiff = c − c′ (4)
IEprod = a × b (5)

IEdiff and IEprod are equivalent in simple mediation.

• Both give us information about the proportion of the total effect that
is transmitted through the intermediary variable.

• IEprod provides a more direct representation of the actual pathway
we’re interested in testing.

• IEdiff gets at our desired hypothesis indirectly.

10 of 75



The Causal Steps Approach

Baron and Kenny (1986, p. 1176) describe three/four conditions as being
sufficient to demonstrate statistical “mediation.”

1. Variations in levels of the independent variable significantly account
for variations in the presumed mediator (i.e., Path a).
◦ Need a significant a path.

2. Variations in the mediator significantly account for variations in the
dependent variable (i.e., Path b).
◦ Need a significant b path.

3. When Paths a and b are controlled, a previously significant relation
between the independent and dependent variables is no longer
significant.
◦ Need a significant total effect
◦ The direct effect must be “less” than the total effect
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Example Process Model

Consider the following process.

Political 
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Systemic
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AA Policy
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c’
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Causal Steps Example

## Load some data:

dat1 <- readRDS("../data/adamsKlpsScaleScore.rds")

## Check pre-conditions:

mod1 <- lm(policy ~ polAffil, data = dat1)

mod2 <- lm(policy ~ sysRac, data = dat1)

mod3 <- lm(sysRac ~ polAffil, data = dat1)

## Partial out the mediator's effect:

mod4 <- lm(policy ~ sysRac + polAffil, data = dat1)
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Causal Steps Example

summary(mod1)

Call:

lm(formula = policy ~ polAffil, data = dat1)

Residuals:

Min 1Q Median 3Q Max

-2.7357 -0.8254 0.0643 0.6827 3.2481

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.71516 0.35648 7.617 3.32e-11 ***

polAffil 0.23675 0.07775 3.045 0.0031 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.134 on 85 degrees of freedom

Multiple R-squared: 0.09836,Adjusted R-squared: 0.08775

F-statistic: 9.273 on 1 and 85 DF, p-value: 0.003096
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Causal Steps Example

summary(mod2)

Call:

lm(formula = policy ~ sysRac, data = dat1)

Residuals:

Min 1Q Median 3Q Max

-2.28970 -0.53821 0.08866 0.64015 3.08343

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.1218 0.4883 2.297 0.0241 *

sysRac 0.6649 0.1210 5.494 4.03e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.026 on 85 degrees of freedom

Multiple R-squared: 0.262,Adjusted R-squared: 0.2534

F-statistic: 30.18 on 1 and 85 DF, p-value: 4.029e-07
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Causal Steps Example

summary(mod3)

Call:

lm(formula = sysRac ~ polAffil, data = dat1)

Residuals:

Min 1Q Median 3Q Max

-2.2187 -0.5449 -0.2115 0.6182 1.9516

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.19726 0.27634 11.570 <2e-16 ***

polAffil 0.17023 0.06027 2.825 0.0059 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8788 on 85 degrees of freedom

Multiple R-squared: 0.08581,Adjusted R-squared: 0.07505

F-statistic: 7.978 on 1 and 85 DF, p-value: 0.005898
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Causal Steps Example
summary(mod4)

Call:

lm(formula = policy ~ sysRac + polAffil, data = dat1)

Residuals:

Min 1Q Median 3Q Max

-2.1370 -0.6338 -0.0020 0.6658 3.4674

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.80704 0.51013 1.582 0.1174

sysRac 0.59680 0.12478 4.783 7.3e-06 ***

polAffil 0.13515 0.07252 1.864 0.0658 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.011 on 84 degrees of freedom

Multiple R-squared: 0.2913,Adjusted R-squared: 0.2745

F-statistic: 17.27 on 2 and 84 DF, p-value: 5.228e-07
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Causal Steps Example

## Extract important parameter estimates:

a <- coef(mod3)["polAffil"]

b <- coef(mod4)["sysRac"]

c <- coef(mod1)["polAffil"]

cPrime <- coef(mod4)["polAffil"]

## Compute indirect effects:

ieDiff <- unname(c - cPrime)

ieProd <- unname(a * b)

ieDiff

[1] 0.1015958

ieProd

[1] 0.1015958
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Sobel’s Z

In the previous example, do we have a significant indirect effect?

• The direct effect is “substantially” smaller than the total effect, but is
the difference statistically significant?

• Sobel (1982) developed an asymptotic standard error for IEprod that
we can use to assess this hypothesis.

SEsobel =
√︃
a2 × SE2

b + b
2 · SE2

a (6)

Zsobel =
ab
SEsobel

(7)

95%CIsobel = ab ± 1.96 × SEsobel (8)
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Sobel Example

## SE:

seA <- (mod3 %>% vcov() %>% diag() %>% sqrt())["polAffil"]

seB <- (mod4 %>% vcov() %>% diag() %>% sqrt())["sysRac"]

se <- sqrt(b^2 * seA^2 + a^2 * seB^2) %>% unname()

## z-score:

(z <- ieProd / se)

[1] 2.432107

## p-value:

(p <- 2 * pnorm(z, lower = FALSE))

[1] 0.01501126

## 95% CI:

c(ieProd - 1.96 * se, ieProd + 1.96 * se)

[1] 0.01972121 0.18347034
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Recall our Basic Path Diagram
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Two Measures of Indirect Effect

Recall the two definitions of an indirect effect:

IEdiff = c − c′ (9)
IEprod = a × b (10)

It pays to remember a few key points:

• IEdiff and IEprod are equivalent in simple mediation.

• IEdiff is only an indirect indication of IEprod.

• If we only care about the indirect effect, then we don’t need to worry
about the total effect.

These points imply something interesting:

• We don’t need to estimate c!
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Simplifying our Path Diagram

Question: If we don’t care about directly estimating c, how can we
simplify this diagram?

X
Input

M
Mediator/

Intermediary

Y
Outcome

X
Input

Y
Outcome

c

ba

c’

23 of 75



Simplifying our Path Diagram

Answer: We don’t fit the upper model.
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c’ 
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Why Path Analysis?
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Example
Let’s revisit the above example using path analysis in lavaan.

Systemic 
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Example

## Load the lavaan package:

library(lavaan)

## Specify the basic path model:

mod1 <- '

policy ~ 1 + sysRac + polAffil

sysRac ~ 1 + polAffil

'

## Estimate the model:

out1 <- sem(mod1, data = dat1)

27 of 75



Example

## Look at the results:

partSummary(out1, 7:9)

Regressions:

Estimate Std.Err z-value P(>|z|)

policy ~

sysRac 0.597 0.123 4.867 0.000

polAffil 0.135 0.071 1.897 0.058

sysRac ~

polAffil 0.170 0.060 2.858 0.004

Intercepts:

Estimate Std.Err z-value P(>|z|)

.policy 0.807 0.501 1.610 0.107

.sysRac 3.197 0.273 11.705 0.000

Variances:

Estimate Std.Err z-value P(>|z|)

.policy 0.987 0.150 6.595 0.000

.sysRac 0.755 0.114 6.595 0.000
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Example

## Include the indirect effect:

mod2 <- '

policy ~ 1 + b*sysRac + polAffil

sysRac ~ 1 + a*polAffil

ab := a*b # Define a parameter for the indirect effect

'

## Estimate the model:

out2 <- sem(mod2, data = dat1)
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Example

## Look at the results:

partSummary(out2, 7:8)

Regressions:

Estimate Std.Err z-value P(>|z|)

policy ~

sysRac (b) 0.597 0.123 4.867 0.000

polAffil 0.135 0.071 1.897 0.058

sysRac ~

polAffil (a) 0.170 0.060 2.858 0.004

Intercepts:

Estimate Std.Err z-value P(>|z|)

.policy 0.807 0.501 1.610 0.107

.sysRac 3.197 0.273 11.705 0.000
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Example

partSummary(out2, 9:10)

Variances:

Estimate Std.Err z-value P(>|z|)

.policy 0.987 0.150 6.595 0.000

.sysRac 0.755 0.114 6.595 0.000

Defined Parameters:

Estimate Std.Err z-value P(>|z|)

ab 0.102 0.041 2.464 0.014
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Example

## We can also get CIs:

parameterEstimates(out2, zstat = FALSE, pvalue = FALSE, ci = TRUE)

lhs op rhs label est se ci.lower ci.upper

1 policy ~1 0.807 0.501 -0.175 1.789

2 policy ~ sysRac b 0.597 0.123 0.356 0.837

3 policy ~ polAffil 0.135 0.071 -0.005 0.275

4 sysRac ~1 3.197 0.273 2.662 3.733

5 sysRac ~ polAffil a 0.170 0.060 0.053 0.287

6 policy ~~ policy 0.987 0.150 0.694 1.280

7 sysRac ~~ sysRac 0.755 0.114 0.530 0.979

8 polAffil ~~ polAffil 2.444 0.000 2.444 2.444

9 polAffil ~1 4.310 0.000 4.310 4.310

10 ab := a*b ab 0.102 0.041 0.021 0.182
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Results

Systemic 

Definition of 

Racism 

Support for AA 

Policies 

Political 

Affiliation 

b = 0.722 a = 0.257 

c’ = 0.051 
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We’re not there yet...

Path analysis allows us to directly model complex (and simple) relations,
but the preceding example still suffers from a considerable limitation.

• The significance test for the indirect effect is still conducted with the
Sobel Z approach.

Path analysis (or full SEM) doesn’t magically get around distributional
problems associated with Sobel’s Z test.

• To get a robust significance test of the indirect effect, we need to use
bootstrapping.
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Bootstrapping

Bootstrapping was introduced by Efron (1979) as a tool for
non-parametric inference.

• Traditional inference requires that we assume a parametric sampling
distribution for our focal parameter.

• We need to make such an assumption to compute the standard
errors we require for inferences.

• If we cannot safely make these assumptions, we can use
bootstrapping.
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Bootstrapping

Assume our observed data Data0 represent the population and:

1. Sample rows of Data0, with replacement, to create B new samples
{Datab}.

2. Calculate our focal statistic on each of the B bootstrap samples.

3. Make inferences based on the empirical distribution of the B
estimates calculated in Step 2
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Bootstrapping

ID X Y 

1 xi=1 yi=1 

2 xi=2 yi=2 

3 xi=3 yi=3 

4 xi=4 yi=4 

5 xi=5 yi=5 

ID X Y 

3 xi=3 yi=3 

2 xi=2 yi=2 

4 xi=4 yi=4 

2 xi=2 yi=2 

3 xi=3 yi=3 

ID X Y 

1 xi=1 yi=1 

3 xi=3 yi=3 

3 xi=3 yi=3 

4 xi=4 yi=4 

5 xi=5 yi=5 

ID X Y 

3 xi=3 yi=3 

5 xi=5 yi=5 

1 xi=1 yi=1 

4 xi=4 yi=4 

3 xi=3 yi=3 

ID X Y 

2 xi=2 yi=2 

5 xi=5 yi=5 

1 xi=1 yi=1 

1 xi=1 yi=1 

4 xi=4 yi=4 

Data0 =  

Datab=1 =  Datab=2 =  Datab=3 =  Datab=B =  , , , … 
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Example

Suppose I’m on the lookout for a retirement location. Since I want to
relax in my old-age, I’m concerned with ensuring a low probability of
dragon attacks, so I have a few salient considerations:

• Shooting for a location with no dragons, whatsoever, is a fools errand
(since dragons are, obviously, ubiquitous).

• I merely require a location that has at least two times as many
dragon-free days as other kinds.
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Example

I’ve been watching several candidate locales over the course of my (long
and illustrious) career, and I’m particularly hopeful about one quiet
hamlet in the Patagonian highlands.

• To ensure that my required degree of dragon-freeness is met, I’ll use
the Dragon Risk Index (DRI):

DRI = Median
(

Dragon-Free Days
Dragonned Days

)
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Example

## Load some useful packages:

library(dplyr)

library(magrittr)

## Read in the observed data:

rawData <- readRDS("../data/daysData.rds")

## Compute the observed test statistic:

(obsDRI <- with(rawData, median(goodDays / badDays)))

[1] 3.24476
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Example

## Define the number of bootstrap samples:

nSams <- 5000

## Set a seed for the RNG:

set.seed(235711)

## Bootstrap the DRI statistic:

bootDRI <- rep(NA, nSams)

for(b in 1:nSams)

bootDRI[b] <- rawData %>%

slice_sample(prop = 1, replace = TRUE) %$% # Resample the data

median(goodDays / badDays) # Calculate the DRI
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Example
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Example
To see if I can be confident in the dragon-freeness of my potential home,
I’ll summarize the preceding distribution with a (one-tailed) percentile
confidence interval:

## Compute the 95% bootstrapped percentile CI:

quantile(bootDRI, c(0.05, 1.0))

5% 100%

2.288555 9.016917

Since we have a directional hypothesis, the upper bound of this interval
is a bit misleading.

max(bootDRI)

[1] 9.016917

qnorm(1.0, mean(bootDRI), sd(bootDRI))

[1] Inf
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Bootstrapped Inference for Indirect Effects

We can apply the same procedure to testing the indirect effect.

• The problem with Sobel’s Z is exactly the type of issue for which
bootstrapping was designed
◦ We don’t know a reasonable finite-sample sampling distribution for the ab

parameter.

• Bootstrapping will allow us to construct an empirical sampling
distribution for ab and construct confidence intervals for inference.
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Bootstrapped Inference for Indirect Effects

Procedure:
1. Resample our observed data with replacement

2. Fit our hypothesized path model to each bootstrap sample

3. Store the value of ab that we get each time

4. Summarize the empirical distribution of ab to make inferences
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Example

abVec <- rep(NA, nSams)

for(i in 1:nSams)

abVec[i] <- dat1 %>%

slice_sample(prop = 1, replace = TRUE) %>% # Resample the data

sem(mod2, data = .) %>% # Fit the model

coef() %>% # Extract estimates

extract(c("a", "b")) %>% # Isolate a and b

prod() # Calculate IE
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Example
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Example

## Calculate the 95% CI:

quantile(abVec, c(0.025, 0.975))

2.5% 97.5%

0.01983687 0.18521091
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Example

## Much more parsimoniously:

bootOut2 <- sem(mod2, data = dat1, se = "boot", bootstrap = nSams)

parameterEstimates(bootOut2, zstat = FALSE, pvalue = FALSE)

lhs op rhs label est se ci.lower ci.upper

1 policy ~1 0.807 0.568 -0.273 1.938

2 policy ~ sysRac b 0.597 0.137 0.313 0.848

3 policy ~ polAffil 0.135 0.084 -0.029 0.300

4 sysRac ~1 3.197 0.277 2.689 3.779

5 sysRac ~ polAffil a 0.170 0.064 0.035 0.291

6 policy ~~ policy 0.987 0.164 0.659 1.302

7 sysRac ~~ sysRac 0.755 0.108 0.535 0.956

8 polAffil ~~ polAffil 2.444 0.000 2.444 2.444

9 polAffil ~1 4.310 0.000 4.310 4.310

10 ab := a*b ab 0.102 0.041 0.020 0.186
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Moderation
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Refresher: Moderation Hypothesis
A moderation hypothesis will attempt to describe when health concerns
affect amount of exercise.

• The when is operationalized in terms of interactions between the
focal predictor and contextualizing variables

• Moderator: Sense of personal agency relating to physical health
(agency).

Health 
Concerns

Amount of 
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Feeling of 
Personal 
Agency
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Equations

In additive MLR, we might have the following equation:

Y = 𝛽0 + 𝛽1X + 𝛽2Z + Y

This additive equation assumes that X and Z are independent predictors
of Y .

When X and Z are independent predictors, the following are true:

• X and Z can be correlated.

• 𝛽1 and 𝛽2 are partial regression coefficients.

• The effect of X on Y is the same at all levels of Z, and the effect of Z
on Y is the same at all levels of X.
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Additive Regression

The effect of X on Y is the same at all levels of Z.
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Moderated Regression

The effect of X on Y varies as a function of Z.
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Equations

The following derivation is adapted from Hayes (2022).

• When testing moderation, we hypothesize that the effect of X on Y
varies as a function of Z.

• We can represent this concept with the following equation:

Y = 𝛽0 + f (Z)X + 𝛽2Z + Y (11)

• If we assume that Z linearly (and deterministically) affects the
relationship between X and Y , then we can take:

f (Z) = 𝛽1 + 𝛽3Z (12)
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Equations

• Substituting Equation 12 into Equation 11 leads to:

Y = 𝛽0 + (𝛽1 + 𝛽3Z)X + 𝛽2Z + Y

• Which, after distributing X and reordering terms, becomes:

Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + Y
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Conceptual vs. Analytic Diagrams
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Testing Moderation

Now, we have an estimable regression model that quantifies the linear
moderation we hypothesized.�� ��Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + Y

• To test for significant moderation, we simply need to test the
significance of the interaction term, XZ.
◦ Check if 𝛽3 is significantly different from zero.
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Interpretation

Given the following equation:

Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + Ŷ

• 𝛽3 quantifies the effect of Z on the focal effect (the X → Y effect).

◦ For a unit change in Z, 𝛽3 is the expected change in the effect of X on Y .

• 𝛽1 and 𝛽2 are conditional effects.
◦ Interpreted where the other predictor is zero.
◦ For a unit change in X, 𝛽1 is the expected change in Y , when Z = 0.
◦ For a unit change in Z, 𝛽2 is the expected change in Y , when X = 0.
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Example

Looking at the diabetes dataset.

• We suspect that patients’ BMIs are predictive of their average blood
pressure.

• We further suspect that this effect may be differentially expressed
depending on the patients’ LDL levels.
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Example

dDat <- readRDS("../data/diabetes.rds")

## Focal Effect:

out0 <- lm(bp ~ bmi, data = dDat)

partSummary(out0, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 61.9973 3.6659 16.91 <2e-16

bmi 1.2379 0.1371 9.03 <2e-16

Residual standard error: 12.72 on 440 degrees of freedom

Multiple R-squared: 0.1563,Adjusted R-squared: 0.1544

F-statistic: 81.54 on 1 and 440 DF, p-value: < 2.2e-16
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Example

## Additive Model:

out1 <- lm(bp ~ bmi + ldl, data = dDat)

partSummary(out1, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.26577 3.91281 15.147 < 2e-16

bmi 1.16567 0.14156 8.235 2.08e-15

ldl 0.04016 0.02056 1.953 0.0515

Residual standard error: 12.68 on 439 degrees of freedom

Multiple R-squared: 0.1636,Adjusted R-squared: 0.1598

F-statistic: 42.94 on 2 and 439 DF, p-value: < 2.2e-16
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Example

## Moderated Model:

out2 <- lm(bp ~ bmi * ldl, data = dDat)

partSummary(out2, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.480616 14.291677 1.013 0.311514

bmi 2.867825 0.541312 5.298 1.86e-07

ldl 0.448771 0.127160 3.529 0.000461

bmi:ldl -0.015352 0.004716 -3.255 0.001221

Residual standard error: 12.54 on 438 degrees of freedom

Multiple R-squared: 0.1834,Adjusted R-squared: 0.1778

F-statistic: 32.78 on 3 and 438 DF, p-value: < 2.2e-16
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Visualizing the Interaction

We can get a better idea of the
patterns of moderation by plotting
the focal effect at conditional values
of the moderator.
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Example

Of course, we can fit the same model in lavaan.

library(lavaan)

## Specify the model:

mod <- 'bp ~ 1 + bmi + ldl + bmi:ldl'

## Estimate the model:

lavOut <- sem(mod, data = dDat)
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Example

partSummary(lavOut, 7:9)

Regressions:

Estimate Std.Err z-value P(>|z|)

bp ~

bmi 2.868 0.539 5.322 0.000

ldl 0.449 0.127 3.545 0.000

bmi:ldl -0.015 0.005 -3.270 0.001

Intercepts:

Estimate Std.Err z-value P(>|z|)

.bp 14.481 14.227 1.018 0.309

Variances:

Estimate Std.Err z-value P(>|z|)

.bp 155.871 10.485 14.866 0.000
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Probing the Interaction

A significant estimate of 𝛽3 tells us that the effect of X on Y depends on
the level of Z, but not much more.

• The plot above gives a descriptive illustration of the pattern, but does
not support statistical inference.
◦ The three conditional effects we plotted look different, but we cannot say

much about how they differ with only the plot and 𝛽3.

• This is the purpose of probing the interaction.
◦ Try to isolate areas of Z’s distribution in which X → Y effect is significant

and areas where it is not.
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Probing the Interaction

The most popular method of probing interactions is to do a so-called
simple slopes analysis.

• Pick-a-point approach

• Spotlight analysis

In simple slopes analysis, we test if the slopes of the conditional effects
plotted above are significantly different from zero.

• To do so, we test the significance of simple slopes.
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Simple Slopes

Recall the derivation of our moderated equation:

Y = 𝛽0 + 𝛽1X + 𝛽2Z + 𝛽3XZ + Y

We can reverse the process by factoring out X and reordering terms:

Y = 𝛽0 + (𝛽1 + 𝛽3Z)X + 𝛽2Z + Y

Where f (Z) = 𝛽1 + 𝛽3Z is the linear function that shows how the
relationship between X and Y changes as a function of Z.�� ��f (Z) is the simple slope.

• By plugging different values of Z into f (Z), we get the value of the
conditional effect of X on Y at the chosen level of Z.
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Significance Testing of Simple Slopes

The values of Z used to define the simple slopes are arbitrary.

• The most common choice is:
{
(Z̄ − SDZ), Z̄, (Z̄ + SDZ)

}
• You could also use interesting percentiles of Z’s distribution.

The standard error of a simple slope is given by:

SEf (Z) =
√︃
SE2

𝛽1
+ 2Z × cov(𝛽1, 𝛽3) + Z2SE2

𝛽3

So, you can test the significance of a simple slope by constructing a
t-statistic or confidence interval using f̂ (Z) and SEf (Z) :

t = f̂ (Z)
SEf (Z)

, CI = f̂ (Z) ± tcrit × SEf (Z)

71 of 75



Example

We can use semTools routines to probe interaction in lavaan models.

• probe2WayMC(): simple slopes/intercepts analysis

• plotProbe(): simple slopes plots

library(semTools)

## Estimate and test simple slopes and simple intercepts:

ssOut <- probe2WayMC(lavOut,

nameX = c("bmi", "ldl", "bmi:ldl"),

nameY = "bp",

modVar = "ldl",

valProbe = quantile(dDat$ldl, c(0.25, 0.50, 0.75))

)
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Example

## View the results:

ssOut

$SimpleIntcept

ldl est se z pvalue

25% 96.05 57.585 4.017 14.334 0

50% 113.00 65.192 3.736 17.449 0

75% 134.50 74.840 4.944 15.139 0

$SimpleSlope

ldl est se z pvalue

25% 96.05 1.393 0.156 8.942 0

50% 113.00 1.133 0.140 8.107 0

75% 134.50 0.803 0.178 4.508 0
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Example
## Plot the simple slopes:

plotProbe(ssOut, xlim = range(dDat$bmi), xlab = "BMI", ylab = "BP")
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