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Motivating Example

Imagine you are working for an F1 team. You’re job is to use data from
past seasons to optimize the baseline setup of your team’s car.

• Suppose you have two candidate setups that you want to compare.

• For each setup, you have 100 past lap times.

• How do you distill those 200 lap times into a succinct decision
between the two setups?
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Motivating Example

Suppose I tell you that the mean lap time for Setup A is 118 seconds and
the mean lap time for Setup B is 110 seconds.

• Can you confidently recommend Setup B?

• What caveats might you consider?
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Motivating Example

Suppose I tell you that the standard deviation for the times under Setup
A is 7 seconds and the standard deviation for the times under Setup B is
5 seconds.

• How would you incorporate this new information into your decision?

Suppose, instead, that the standard deviation of times under Setup A is
35 seconds and the standard deviation under setup B is 25 seconds.

• How should you adjust your appraisal of the setups’ relative benefits?
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Statistical Reasoning

The preceding example calls for statistical reasoning.

• The foundation of all good statistical analyses is a deliberate, careful,
and thorough consideration of uncertainty.

• In the previous example, the mean lap time for Setup A is clearly
longer than the mean lap time for Setup B.

• If the times are highly variable, with respect to the size of the mean
difference, we may not care much about the mean difference.

• The purpose of statistics is to systematize the way that we account for
uncertainty when making data-based decisions.
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Probability Distributions

Statisticians (and anyone who uses statistics) quantify uncertainty using
probability distributions.

• Probability distributions quantify how likely it is to observe each
possible value of some probabilistic entity.

• Probability distributions are re-scaled frequency distributions.

• We can build up the intuition of a probability density by beginning
with a histogram.
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Probability Distributions
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Reasoning with Distributions

We will gain insight by conceptualizing our example problem in terms of
the underlying distributions of lap times.
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Statistical Testing

In practice, we may want to distill the information in the preceding plots
into a simple statistic so we can make a judgment.

• One way to distill this information and control for uncertainty when
generating knowledge is through statistical testing.
◦ When we conduct statistical tests, we define a test statistic by weighting

the estimated effect by the precision of the estimate.

• One of the most common test statistics, Student’s t-test, follows this
pattern:

t = Estimate − Null-Hypothesized Value
Variability
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Statistical Testing
To test the nil-null hypothesis of a zero mean difference, we define the
t-statistic as follows:

t =

(
X̄A − X̄B

)
− 0√︂

S2
A−B

(
n−1
A + n−1

B

)
where

Estimate = X̄A − X̄B
and

Variability =

√︂
S2
A−B

(
n−1
A + n−1

B

)
=

√︄
(nA − 1)S2

A + (nB − 1)S2
B

nA + nB − 2

( 1
nA

+ 1
nB

)
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Statistical Testing

Applying the preceding formula to the first instantiation of our example
problem produces:

t = 118 − 110 − 0√︃
(100−1)72+(100−1)52

100+100−2
( 1

100 + 1
100

)
≈ 8

0.86
≈ 9.30
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Statistical Testing

If we consider the second instantiation of our example problem, the
effect does not change, but our measure of variability does:

V =

√︄
(100 − 1)352 + (100 − 1)252

100 + 100 − 2

( 1
100 + 1

100

)
≈ 4.30

As a results, our test statistic changes to reflect our decreased certainty:

t ≈ 8
4.30 ≈ 1.86
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Statistical Modeling

Statistical testing is a very useful tool, but it quickly reaches a limit.

• In experimental contexts (with successful random assignment)
real-world “messiness” is controlled through random assignment.
◦ Researchers working with messy observational data, usually don’t have

questions that lend themselves to rigorous testing.

• Unless embedded in a larger model, statistical tests can only answer
simple yes/no questions about single parameters.
◦ Researchers studying complex processes need more elaborate means of

representing the phenomena under study.

Such situations call for statistical modeling.
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What is a Statistical Model?

A statistical model is a mathematical representation of the thing we’re
trying to study.
• We can basically model anything.

◦ Theoretical process
◦ Social or physical system
◦ Natural phenomenon

• The model succinctly describes whatever system is being analyzed.
◦ The model is an abstraction of reality.
◦ We only include the interesting parts of the process.

• For our purposes, a statistical model is a probability distribution that
describes the possible ways our focal system can ”behave”.
◦ Such model are a rigorous, unambiguous quantification of a theory.
◦ We can evaluate theories by comparing models.

15 of 43



Statistical Modeling

To apply a modeling approach to
our example problem we consider
the combined distribution of lap
times.

• The model we construct will
explain variation in lap times
based on interesting features.

• In this simple case, the only
feature we consider is the type of
setup.
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Modeling our Example

Let’s say we’re willing to assume that the (conditional) distribution of lap
times is normal.

Ytime ∼ N
(
𝜇, 𝜎2)

To get the same answer as our statistical test, we model the mean of the
distribution of lap times, 𝜇, using a single grouping factor.

𝜇 = 𝛽0 + 𝛽1Xsetup

Ytime ∼ N
(
𝛽0 + 𝛽1Xsetup, 𝜎2)
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Modeling our Example

Since we’re mostly interested in describing the mean lap time, we can
express the above differently:

Ytime = 𝛽0 + 𝛽1Xsetup + 𝜀

𝜀 ∼ N
(
0, 𝜎2)

After we fit this model to a sample, the parameters 𝛽0 and 𝛽1 are
replaced by estimated statistics.

Ŷtime = 𝛽0 + 𝛽1Xsetup

= 110 + 8Xsetup
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Modeling our Example

We can easily fit this model in R:

lmOut <- lm(time ~ setup, data = exData)

partSummary(lmOut, -c(1, 2))

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 110.0000 0.6083 180.8 <2e-16

## setupA 8.0000 0.8602 9.3 <2e-16

##

## Residual standard error: 6.083 on 198 degrees of freedom

## Multiple R-squared: 0.304,Adjusted R-squared: 0.3005

## F-statistic: 86.49 on 1 and 198 DF, p-value: < 2.2e-16
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Two Modeling Traditions

Breiman (2001) defines two cultures of statistical modeling:

• Data models & Algorithmic models

• Our definition of statistical models matches Breiman’s definition of
data models.

Both approaches have strengths and weaknesses.

• Data models tend to support a priori hypothesis testing more easily.

• Data models also tend to provide more interpretable results.

• Algorithmic models are currently preferred in cutting edge
prediction/classification applications.

• Many models can be viewed as data models or algorithmic models,
depending on how they’re used.
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Characteristics of Models

DataModels
• Data models are built from probability distributions.

◦ Data models are modular.

• Data models encode our hypothesized understanding of the system
we’re exploring.
◦ Data models are constructed in a “top-down”, theory-driven way.

AlgorithmicModels
• Algorithmic models do not have to be built from probability

distributions.
◦ Often, they are based on a set of decision rules (i.e., an algorithm).

• Algorithmic models begin with an objective (i.e., a problem to solve)
and seek the optimal solution, given the data.
◦ They are built in a “bottom-up”, data-driven way.
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Data Modeling Example

Suppose we believe the following:

1. BMI is positively associated with disease progression in diabetic
patients after controlling for age and average blood pressure.

2. After controlling for age and average blood pressure, the effect of
BMI on disease progression is different for men and women.

We can represent these beliefs with a moderated regression model:

Yprog = 𝛽0 + 𝛽1XBMI + 𝛽2Xsex + 𝛽3Xage + 𝛽4XBP + 𝛽5XBMIXsex + 𝜀

22 of 43



Data Modeling Example

We can use R to fit our model to some patient data:

## Load the data:

dataDir <- "../data/"

diabetes <- readRDS(paste0(dataDir, "diabetes.rds"))

## Fit the regression model:

fit <- lm(progress ~ bmi * sex + age + bp, data = diabetes)
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Data Modeling Example

partSummary(fit, -c(1, 2))

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -174.7986 27.0004 -6.474 2.58e-10

## bmi 7.2106 0.8922 8.082 6.34e-15

## sexmale -90.1718 35.1134 -2.568 0.0106

## age 0.1691 0.2322 0.728 0.4670

## bp 1.4032 0.2385 5.884 7.97e-09

## bmi:sexmale 3.0257 1.3090 2.311 0.0213

##

## Residual standard error: 59.68 on 436 degrees of freedom

## Multiple R-squared: 0.4075,Adjusted R-squared: 0.4007

## F-statistic: 59.98 on 5 and 436 DF, p-value: < 2.2e-16
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Data Modeling Example

We can do a simple slopes analysis to test the group-specific effects of
BMI on disease progression:

library(rockchalk)

psOut <- plotSlopes(fit, plotx = "bmi", modx = "sex")

tsOut <- testSlopes(psOut)

tsOut$hypotests[ , -1]

## slope Std. Error t value Pr(>|t|)

## female 7.210575 0.8921929 8.081856 6.335264e-15

## male 10.236323 1.0328739 9.910525 5.137409e-21
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Data Modeling Example
We can also visualize the simple slopes:
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Algorithmic Modeling Example

Suppose we want to find the best predictors of disease progression
among the variables contained in our dataset:

• Age
• BMI
• Blood Pressure
• Blood Glucose
• Sex

• Total Cholesterol
• LDL Cholesterol
• HDL Cholesterol
• Triglycerides
• Lamorigine

We could try best-subset selection.

• Fit a series of regression models wherein disease progression is
predicted by all possible subsets of X variables.

• Choose the set of X variables that minimizes the prediction error.
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Algorithmic Modeling Example

library(leaps)

## Save the predictor variables' names:

xNames <- grep(pattern = "progress",

x = colnames(diabetes),

invert = TRUE,

value = TRUE)

## Train the models:

fit <- regsubsets(x = progress ~ .,

data = diabetes,

nvmax = ncol(diabetes) - 1)

## Summarize the results:

sum <- summary(fit)
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Algorithmic Modeling Example

sum$outmat

## age bmi bp tc ldl hdl tch ltg glu sexmale

## 1 ( 1 ) " " "*" " " " " " " " " " " " " " " " "

## 2 ( 1 ) " " "*" " " " " " " " " " " "*" " " " "

## 3 ( 1 ) " " "*" "*" " " " " " " " " "*" " " " "

## 4 ( 1 ) " " "*" "*" "*" " " " " " " "*" " " " "

## 5 ( 1 ) " " "*" "*" " " " " "*" " " "*" " " "*"

## 6 ( 1 ) " " "*" "*" "*" "*" " " " " "*" " " "*"

## 7 ( 1 ) " " "*" "*" "*" "*" " " "*" "*" " " "*"

## 8 ( 1 ) " " "*" "*" "*" "*" " " "*" "*" "*" "*"

## 9 ( 1 ) " " "*" "*" "*" "*" "*" "*" "*" "*" "*"

## 10 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
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Algorithmic Modeling Example

## Variables selected by BIC:

xNames[with(sum, which[which.min(bic), -1])]

## [1] "bmi" "bp" "hdl" "ltg" "sex"

## Variables selected by Adjusted R^2:

xNames[with(sum, which[which.max(adjr2), -1])]

## [1] "bmi" "bp" "tc" "ldl" "tch" "ltg" "glu" "sex"

## Variables selected by Mallow's Cp:

xNames[with(sum, which[which.min(cp), -1])]

## [1] "bmi" "bp" "tc" "ldl" "ltg" "sex"
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Prediction & Estimation
There are two other common objectives of statistical analyses.
1. Prediction/Classification
2. Estimation

Prediction/Classification involves building a model to ”guess” future
values of some outcome.
• Weather forecasting
• Predicting the winner of an election
• Financial projections

Estimation focuses on getting the most accurate possible estimate of
some real-world quantity.
• The number of refugees in a country
• The rates of obesity in a certain population
• The number of traffic accidents in a given area
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Formal Modeling

Smaldino (2017) distinguishes between two ways in which we can
translate theories into models.

VerbalModel
• Vague description of the theory or phenomenon
• Does not describe the theory with enough rigor/specificity to define a

single, unambiguous representation
• Could describe multiple phenomena equally well

FormalModel
• Rigorously defines all the important aspects of a system
• Implies only one representation of the phenomenon
• Can be used to rule-out potential theories by comparing models
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Path Analysis
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Path Analysis

Suppose we have the following theory about diabetic patients.

• A patient’s age and sex affect their blood pressure and blood glucose
levels.

• After accounting for age and sex, blood pressure and blood glucose
levels retain some residual correlation.

• Age and sex are not correlated.

This theory implies two correlated outcome variables.

• We cannot model this theory with univariate regression models.

This is a prime case for path analysis.
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Path Diagram
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Path Diagram
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Estimating the Model

library(dplyr)

library(lavaan)

mod1 <- '

## Define the structural relations:

bp + glu ~ age + male

## Do not allow the input variables to covary:

age ~~ 0 * male

'

out <- diabetes %>%

mutate(male = ifelse(sex == "male", 1, 0)) %>%

sem(mod1, data = ., fixed.x = FALSE)
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Estimating the Model

partSummary(out, 7)

## Regressions:

## Estimate Std.Err z-value P(>|z|)

## bp ~

## age 0.319 0.046 6.890 0.000

## male 5.217 1.216 4.289 0.000

## glu ~

## age 0.240 0.039 6.123 0.000

## male 3.695 1.029 3.590 0.000

38 of 43



Estimating the Model

partSummary(out, 8:10)

## Covariances:

## Estimate Std.Err z-value P(>|z|)

## age ~~

## male 0.000

## .bp ~~

## .glu 41.230 6.840 6.028 0.000

##

## Variances:

## Estimate Std.Err z-value P(>|z|)

## .bp 162.824 10.953 14.866 0.000

## .glu 116.565 7.841 14.866 0.000

## age 171.458 11.534 14.866 0.000

## male 0.249 0.017 14.866 0.000
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Visualizing the Fitted Model
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Teaser

Suppose we have the following theory about student performance.

• A students age affects their spatial reasoning ability.

• The effect of age on spatial reasoning ability is partially mediated by
mathematical ability.

• We can measure spatial reasoning ability and mathematical ability
with five-item tests.

We could translate this theory into the following structural equation
model.
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Teaser
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