2.3 At-Home Exercises
Load the LifeSat.sav
data.
2.3.1
Make a table of descriptive statistics for the variables: LifSat
, educ
,
ChildSup
, SpouSup
, and age
.
- What is the average age in the sample?
- What is the range (youngest and oldest child)?
Hint: Use the tidySEM::descriptives()
function.`
Click for explanation
- The package
tidySEM
contains thedescriptives()
function for computing descriptive statistics. - The
describe()
function in thepsych
package is a good alternative.
2.3.2
Run a simple linear regression with LifSat
as the dependent variable and
educ
as the independent variable.
Hints:
- The
lm()
function (short for linear model) does linear regression. - The
summary()
function provides relevant summary statistics for the model. - It can be helpful to store the results of your analysis in an object.
Click for explanation
##
## Call:
## lm(formula = LifSat ~ educ, data = LifeSat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -43.781 -11.866 2.018 12.418 43.018
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35.184 7.874 4.469 2.15e-05 ***
## educ 3.466 1.173 2.956 0.00392 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.64 on 96 degrees of freedom
## Multiple R-squared: 0.08344, Adjusted R-squared: 0.0739
## F-statistic: 8.74 on 1 and 96 DF, p-value: 0.003918
2.3.3
Repeat the analysis from 2.3.2 with age
as the independent variable.
Click for explanation
##
## Call:
## lm(formula = LifSat ~ age, data = LifeSat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -35.321 -14.184 3.192 13.593 40.626
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 200.2302 52.1385 3.840 0.00022 ***
## age -2.0265 0.7417 -2.732 0.00749 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.75 on 96 degrees of freedom
## Multiple R-squared: 0.07215, Adjusted R-squared: 0.06249
## F-statistic: 7.465 on 1 and 96 DF, p-value: 0.007487
2.3.4
Repeat the analysis from 2.3.2 and 2.3.3 with ChildSup
as the
independent variable.
Click for explanation
##
## Call:
## lm(formula = LifSat ~ ChildSup, data = LifeSat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.32 -12.14 0.66 12.41 44.68
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.559 8.342 4.502 1.89e-05 ***
## ChildSup 2.960 1.188 2.492 0.0144 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.86 on 96 degrees of freedom
## Multiple R-squared: 0.06076, Adjusted R-squared: 0.05098
## F-statistic: 6.211 on 1 and 96 DF, p-value: 0.01441
2.3.5
Run a multiple linear regression with LifSat
as the dependent variable and
educ
, age
, and ChildSup
as the independent variables.
Hint: You can use the +
sign to add multiple variables to the right hand
side (RHS) of your model formula.
Click for explanation
##
## Call:
## lm(formula = LifSat ~ educ + age + ChildSup, data = LifeSat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -32.98 -12.56 2.68 11.03 41.91
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 134.9801 53.2798 2.533 0.0130 *
## educ 2.8171 1.1436 2.463 0.0156 *
## age -1.5952 0.7188 -2.219 0.0289 *
## ChildSup 2.4092 1.1361 2.121 0.0366 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.92 on 94 degrees of freedom
## Multiple R-squared: 0.1741, Adjusted R-squared: 0.1477
## F-statistic: 6.603 on 3 and 94 DF, p-value: 0.0004254