5.3 At-Home Exercises

This week, we will wrap up our re-analysis of the Kestilä (2006) results. During this practical, you will conduct a CFA of the Trust in Politics items and compare the results to those obtained from your previous EFA- and PCA-based replications of Kestilä (2006).


5.3.1

Load the ESS data.

  • The relevant data are contained in the ess_round1.rds file.
    • This file is in R Data Set (RDS) format.
    • The dataset is already stored as a data frame with the processing and cleaning that you should have done for previous practicals completed.
Click to show code
ess <- readRDS("ess_round1.rds")

Although you may have settled on any number of EFA solutions during the Week 4 In-Class Exercises, we are going to base the following CFA on a three-factor model of Trust in Politics similar to the original PCA results from Kestilä (2006).

Note: Unless otherwise specified, all following questions refer to the Trust in Politics items. We will not consider the Attitudes toward Immigration items in these exercises.


5.3.2

Define the lavaan model syntax for the CFA implied by the three-factor EFA solution you found in the Week 4 In-Class Exercises.

  • Covary the three latent factors.
  • Do not specify any mean structure.
  • Save this model syntax as an object in your environment.
Click to show code
mod_3f <- '
institutions =~ trstlgl + trstplc + trstun + trstep + trstprl
satisfaction =~ stfhlth + stfedu  + stfeco + stfgov + stfdem
politicians  =~ pltinvt + pltcare + trstplt
'
Click for explanation

We don’t have to specify the latent covariances in the model syntax, we can tell lavaan to estimate all latent covariances when we fit the model.


5.3.3

Estimate the CFA model you defined above, and summarize the results.

  • Use the lavaan::cfa() function to estimate the model.
  • Use the default settings for the cfa() function.
  • Request the model fit statistics with the summary by supplying the fit.measures = TRUE argument to summary().
  • Request the standardized parameter estimates with the summary by supplying the standardized = TRUE argument to summary().

Check the results, and answer the following questions:

  • Does the model fit the data well?
  • How are the latent variances and covariances specified when using the default settings?
  • How is the model identified when using the default settings?
Click the code
## Load the lavaan package:
library(lavaan)

## Estimate the CFA model:
fit_3f <- cfa(mod_3f, data = ess)

## Summarize the fitted model:
summary(fit_3f, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 46 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        29
## 
##                                                   Used       Total
##   Number of observations                         14778       19690
## 
## Model Test User Model:
##                                                        
##   Test statistic                              10652.207
##   Degrees of freedom                                 62
##   P-value (Chi-square)                            0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             81699.096
##   Degrees of freedom                                78
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.870
##   Tucker-Lewis Index (TLI)                       0.837
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)            -371404.658
##   Loglikelihood unrestricted model (H1)    -366078.555
##                                                       
##   Akaike (AIC)                              742867.317
##   Bayesian (BIC)                            743087.743
##   Sample-size adjusted Bayesian (SABIC)     742995.583
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.108
##   90 Percent confidence interval - lower         0.106
##   90 Percent confidence interval - upper         0.109
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.059
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   institutions =~                                                       
##     trstlgl           1.000                               1.613    0.677
##     trstplc           0.770    0.012   61.866    0.000    1.241    0.567
##     trstun            0.929    0.013   69.227    0.000    1.498    0.642
##     trstep            0.908    0.013   70.929    0.000    1.464    0.660
##     trstprl           1.139    0.014   84.084    0.000    1.837    0.809
##   satisfaction =~                                                       
##     stfhlth           1.000                               1.173    0.521
##     stfedu            1.106    0.022   50.840    0.000    1.297    0.577
##     stfeco            1.415    0.025   57.214    0.000    1.659    0.713
##     stfgov            1.480    0.025   58.764    0.000    1.736    0.756
##     stfdem            1.384    0.024   57.904    0.000    1.623    0.731
##   politicians =~                                                        
##     pltinvt           1.000                               0.646    0.613
##     pltcare           1.021    0.016   62.862    0.000    0.660    0.628
##     trstplt           3.012    0.039   76.838    0.000    1.946    0.891
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   institutions ~~                                                       
##     satisfaction      1.391    0.032   43.206    0.000    0.736    0.736
##     politicians       0.909    0.018   49.934    0.000    0.872    0.872
##   satisfaction ~~                                                       
##     politicians       0.539    0.013   41.053    0.000    0.711    0.711
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .trstlgl           3.068    0.041   75.262    0.000    3.068    0.541
##    .trstplc           3.248    0.041   80.037    0.000    3.248    0.678
##    .trstun            3.197    0.041   77.141    0.000    3.197    0.588
##    .trstep            2.776    0.036   76.243    0.000    2.776    0.564
##    .trstprl           1.776    0.029   61.361    0.000    1.776    0.345
##    .stfhlth           3.695    0.046   79.989    0.000    3.695    0.729
##    .stfedu            3.368    0.043   77.916    0.000    3.368    0.667
##    .stfeco            2.656    0.038   69.070    0.000    2.656    0.491
##    .stfgov            2.264    0.035   64.201    0.000    2.264    0.429
##    .stfdem            2.289    0.034   67.172    0.000    2.289    0.465
##    .pltinvt           0.694    0.009   78.255    0.000    0.694    0.624
##    .pltcare           0.668    0.009   77.562    0.000    0.668    0.605
##    .trstplt           0.978    0.028   34.461    0.000    0.978    0.205
##     institutions      2.601    0.059   44.198    0.000    1.000    1.000
##     satisfaction      1.375    0.044   31.407    0.000    1.000    1.000
##     politicians       0.417    0.011   38.843    0.000    1.000    1.000
Click for explanation

No, the model does not seem to fit the data well.

  • The SRMR looks good, but one good looking fit statistic is not enough.
  • The RMSEA, TLI, and CFI are all in the “unacceptable” range.
  • The \(\chi^2\) is highly significant, but we don’t care.

The cfa() function is just a wrapper for the lavaan() function with several options set at the defaults you would want for a standard CFA.

  • By default:
    • All latent variances and covariances are freely estimated (due to the argument auto.cov.lv.x = TRUE)
    • The model is identified by fixing the first factor loading of each factor to 1 (due to the argument auto.fix.first = TRUE)

To see a full list of the (many) options you can specify to tweak the behavior of lavaan estimation functions run ?lavOptions.


Now, we will consider a couple of alternative factor structures for the Trust in Politics CFA. First, we will go extremely simple by estimating a one-factor model wherein all Trust items are explained by a single latent variable.


5.3.4

Define the lavaan model syntax for a one-factor model of the Trust items.

  • Save this syntax as an object in your environment.
Click to show code
mod_1f <- '
political_trust =~ 
  trstlgl +
  trstplc +
  trstun +
  trstep +
  trstprl +
  stfhlth +
  stfedu  +
  stfeco +
  stfgov +
  stfdem +
  pltinvt +
  pltcare +
  trstplt
'

5.3.5

Estimate the one-factor model, and summarize the results.

  • Does this model appear to fit better or worse than the three-factor model?

Note: You can use the lavaan::fitMeasures() function to extract only the model fit information from a fitted lavaan object.

Click to show code
## Estimate the one factor model:
fit_1f <- cfa(mod_1f, data = ess)

## Summarize the results:
summary(fit_1f, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        26
## 
##                                                   Used       Total
##   Number of observations                         14778       19690
## 
## Model Test User Model:
##                                                        
##   Test statistic                              17667.304
##   Degrees of freedom                                 65
##   P-value (Chi-square)                            0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             81699.096
##   Degrees of freedom                                78
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.784
##   Tucker-Lewis Index (TLI)                       0.741
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)            -374912.206
##   Loglikelihood unrestricted model (H1)    -366078.555
##                                                       
##   Akaike (AIC)                              749876.413
##   Bayesian (BIC)                            750074.036
##   Sample-size adjusted Bayesian (SABIC)     749991.410
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.135
##   90 Percent confidence interval - lower         0.134
##   90 Percent confidence interval - upper         0.137
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.080
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                      Estimate  Std.Err  z-value  P(>|z|)
##   political_trust =~                                    
##     trstlgl             1.000                           
##     trstplc             0.774    0.013   57.949    0.000
##     trstun              0.930    0.014   64.200    0.000
##     trstep              0.909    0.014   65.679    0.000
##     trstprl             1.182    0.015   79.401    0.000
##     stfhlth             0.615    0.013   45.947    0.000
##     stfedu              0.695    0.014   51.424    0.000
##     stfeco              0.895    0.014   62.316    0.000
##     stfgov              0.985    0.014   68.200    0.000
##     stfdem              0.998    0.014   70.899    0.000
##     pltinvt             0.382    0.006   59.215    0.000
##     pltcare             0.396    0.006   61.195    0.000
##     trstplt             1.183    0.014   81.716    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .trstlgl           3.370    0.042   79.787    0.000
##    .trstplc           3.410    0.041   82.311    0.000
##    .trstun            3.451    0.043   80.749    0.000
##    .trstep            3.019    0.038   80.272    0.000
##    .trstprl           1.938    0.027   70.878    0.000
##    .stfhlth           4.201    0.050   84.093    0.000
##    .stfedu            3.941    0.047   83.419    0.000
##    .stfeco            3.565    0.044   81.289    0.000
##    .stfgov            3.044    0.038   79.326    0.000
##    .stfdem            2.631    0.034   78.072    0.000
##    .pltinvt           0.775    0.009   82.043    0.000
##    .pltcare           0.743    0.009   81.579    0.000
##    .trstplt           1.548    0.023   67.052    0.000
##     political_trst    2.299    0.055   41.569    0.000
## Compare fit statistics:
fitMeasures(fit_3f)
##                  npar                  fmin                 chisq 
##                29.000                 0.360             10652.207 
##                    df                pvalue        baseline.chisq 
##                62.000                 0.000             81699.096 
##           baseline.df       baseline.pvalue                   cfi 
##                78.000                 0.000                 0.870 
##                   tli                  nnfi                   rfi 
##                 0.837                 0.837                 0.836 
##                   nfi                  pnfi                   ifi 
##                 0.870                 0.691                 0.870 
##                   rni                  logl     unrestricted.logl 
##                 0.870           -371404.658           -366078.555 
##                   aic                   bic                ntotal 
##            742867.317            743087.743             14778.000 
##                  bic2                 rmsea        rmsea.ci.lower 
##            742995.583                 0.108                 0.106 
##        rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
##                 0.109                 0.900                 0.000 
##        rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
##                 0.050                 1.000                 0.080 
##                   rmr            rmr_nomean                  srmr 
##                 0.255                 0.255                 0.059 
##          srmr_bentler   srmr_bentler_nomean                  crmr 
##                 0.059                 0.059                 0.064 
##           crmr_nomean            srmr_mplus     srmr_mplus_nomean 
##                 0.064                 0.059                 0.059 
##                 cn_05                 cn_01                   gfi 
##               113.901               126.971                 0.897 
##                  agfi                  pgfi                   mfi 
##                 0.849                 0.611                 0.699 
##                  ecvi 
##                 0.725
fitMeasures(fit_1f)
##                  npar                  fmin                 chisq 
##                26.000                 0.598             17667.304 
##                    df                pvalue        baseline.chisq 
##                65.000                 0.000             81699.096 
##           baseline.df       baseline.pvalue                   cfi 
##                78.000                 0.000                 0.784 
##                   tli                  nnfi                   rfi 
##                 0.741                 0.741                 0.741 
##                   nfi                  pnfi                   ifi 
##                 0.784                 0.653                 0.784 
##                   rni                  logl     unrestricted.logl 
##                 0.784           -374912.206           -366078.555 
##                   aic                   bic                ntotal 
##            749876.413            750074.036             14778.000 
##                  bic2                 rmsea        rmsea.ci.lower 
##            749991.410                 0.135                 0.134 
##        rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
##                 0.137                 0.900                 0.000 
##        rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
##                 0.050                 1.000                 0.080 
##                   rmr            rmr_nomean                  srmr 
##                 0.364                 0.364                 0.080 
##          srmr_bentler   srmr_bentler_nomean                  crmr 
##                 0.080                 0.080                 0.087 
##           crmr_nomean            srmr_mplus     srmr_mplus_nomean 
##                 0.087                 0.080                 0.080 
##                 cn_05                 cn_01                   gfi 
##                71.949                79.980                 0.825 
##                  agfi                  pgfi                   mfi 
##                 0.756                 0.590                 0.551 
##                  ecvi 
##                 1.199
Click for explanation

The one-factor model definitely seems to fit worse than the three-factor model.


A second order CFA model is another way of representing the latent structure underlying a set of items. As you read in Byrne (2005), however, the second order CFA is only appropriate in certain circumstances.


5.3.6

Given the CFA results above, would a second order CFA be appropriate for the Trust data? Why or why not?

Click for explanation

Yes, a second order CFA model is a theoretically appropriate representation of the Trust items.

  • The first order latent variables in the three-factor model are all significantly correlated.
  • The first order latent variables in the three-factor model seem to tap different aspects of some single underlying construct.

5.3.7

Define the lavaan model syntax for a second-order CFA model of the Trust items.

  • Use the three factors defined in 5.3.2 as the first order factors.
Click to show code
mod_2nd <- '
institutions =~ trstlgl + trstplc + trstun + trstep + trstprl
satisfaction =~ stfhlth + stfedu  + stfeco + stfgov + stfdem
politicians  =~ pltinvt + pltcare + trstplt

trust =~ politicians + satisfaction + institutions
'
Click for explanation

To define the second order factor, we use the same syntactic conventions that we employ to define a first order factor. The only differences is that the “indicators” of the second order factor (i.e., the variables listed on the RHS of the =~ operator) are previously defined first order latent variables.


5.3.8

Estimate the second order CFA model, and summarize the results.

  • Does this model fit better or worse than the three-factor model?
  • Is this model more or less complex than the three-factor model?
    • What information can you use to quantify this difference in complexity?
Click to show code
fit_2nd <- cfa(mod_2nd, data = ess)
summary(fit_2nd, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        29
## 
##                                                   Used       Total
##   Number of observations                         14778       19690
## 
## Model Test User Model:
##                                                        
##   Test statistic                              10652.207
##   Degrees of freedom                                 62
##   P-value (Chi-square)                            0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             81699.096
##   Degrees of freedom                                78
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.870
##   Tucker-Lewis Index (TLI)                       0.837
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)            -371404.658
##   Loglikelihood unrestricted model (H1)    -366078.555
##                                                       
##   Akaike (AIC)                              742867.317
##   Bayesian (BIC)                            743087.743
##   Sample-size adjusted Bayesian (SABIC)     742995.583
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.108
##   90 Percent confidence interval - lower         0.106
##   90 Percent confidence interval - upper         0.109
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.059
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   institutions =~                                                       
##     trstlgl           1.000                               1.613    0.677
##     trstplc           0.770    0.012   61.866    0.000    1.241    0.567
##     trstun            0.929    0.013   69.227    0.000    1.498    0.642
##     trstep            0.908    0.013   70.929    0.000    1.464    0.660
##     trstprl           1.139    0.014   84.084    0.000    1.837    0.809
##   satisfaction =~                                                       
##     stfhlth           1.000                               1.173    0.521
##     stfedu            1.106    0.022   50.840    0.000    1.297    0.577
##     stfeco            1.415    0.025   57.214    0.000    1.659    0.713
##     stfgov            1.480    0.025   58.764    0.000    1.736    0.756
##     stfdem            1.384    0.024   57.904    0.000    1.623    0.731
##   politicians =~                                                        
##     pltinvt           1.000                               0.646    0.613
##     pltcare           1.021    0.016   62.862    0.000    0.660    0.628
##     trstplt           3.012    0.039   76.838    0.000    1.946    0.891
##   trust =~                                                              
##     politicians       1.000                               0.918    0.918
##     satisfaction      1.531    0.033   46.494    0.000    0.774    0.774
##     institutions      2.583    0.045   56.796    0.000    0.950    0.950
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .trstlgl           3.068    0.041   75.262    0.000    3.068    0.541
##    .trstplc           3.248    0.041   80.037    0.000    3.248    0.678
##    .trstun            3.197    0.041   77.141    0.000    3.197    0.588
##    .trstep            2.776    0.036   76.243    0.000    2.776    0.564
##    .trstprl           1.776    0.029   61.361    0.000    1.776    0.345
##    .stfhlth           3.695    0.046   79.989    0.000    3.695    0.729
##    .stfedu            3.368    0.043   77.916    0.000    3.368    0.667
##    .stfeco            2.656    0.038   69.070    0.000    2.656    0.491
##    .stfgov            2.264    0.035   64.201    0.000    2.264    0.429
##    .stfdem            2.289    0.034   67.172    0.000    2.289    0.465
##    .pltinvt           0.694    0.009   78.255    0.000    0.694    0.624
##    .pltcare           0.668    0.009   77.562    0.000    0.668    0.605
##    .trstplt           0.978    0.028   34.461    0.000    0.978    0.205
##    .institutions      0.255    0.022   11.691    0.000    0.098    0.098
##    .satisfaction      0.551    0.020   27.846    0.000    0.400    0.400
##    .politicians       0.065    0.004   17.091    0.000    0.157    0.157
##     trust             0.352    0.010   35.005    0.000    1.000    1.000
## Compare fit between the first and second order models:
fitMeasures(fit_3f)
##                  npar                  fmin                 chisq 
##                29.000                 0.360             10652.207 
##                    df                pvalue        baseline.chisq 
##                62.000                 0.000             81699.096 
##           baseline.df       baseline.pvalue                   cfi 
##                78.000                 0.000                 0.870 
##                   tli                  nnfi                   rfi 
##                 0.837                 0.837                 0.836 
##                   nfi                  pnfi                   ifi 
##                 0.870                 0.691                 0.870 
##                   rni                  logl     unrestricted.logl 
##                 0.870           -371404.658           -366078.555 
##                   aic                   bic                ntotal 
##            742867.317            743087.743             14778.000 
##                  bic2                 rmsea        rmsea.ci.lower 
##            742995.583                 0.108                 0.106 
##        rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
##                 0.109                 0.900                 0.000 
##        rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
##                 0.050                 1.000                 0.080 
##                   rmr            rmr_nomean                  srmr 
##                 0.255                 0.255                 0.059 
##          srmr_bentler   srmr_bentler_nomean                  crmr 
##                 0.059                 0.059                 0.064 
##           crmr_nomean            srmr_mplus     srmr_mplus_nomean 
##                 0.064                 0.059                 0.059 
##                 cn_05                 cn_01                   gfi 
##               113.901               126.971                 0.897 
##                  agfi                  pgfi                   mfi 
##                 0.849                 0.611                 0.699 
##                  ecvi 
##                 0.725
fitMeasures(fit_2nd)
##                  npar                  fmin                 chisq 
##                29.000                 0.360             10652.207 
##                    df                pvalue        baseline.chisq 
##                62.000                 0.000             81699.096 
##           baseline.df       baseline.pvalue                   cfi 
##                78.000                 0.000                 0.870 
##                   tli                  nnfi                   rfi 
##                 0.837                 0.837                 0.836 
##                   nfi                  pnfi                   ifi 
##                 0.870                 0.691                 0.870 
##                   rni                  logl     unrestricted.logl 
##                 0.870           -371404.658           -366078.555 
##                   aic                   bic                ntotal 
##            742867.317            743087.743             14778.000 
##                  bic2                 rmsea        rmsea.ci.lower 
##            742995.583                 0.108                 0.106 
##        rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
##                 0.109                 0.900                 0.000 
##        rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
##                 0.050                 1.000                 0.080 
##                   rmr            rmr_nomean                  srmr 
##                 0.255                 0.255                 0.059 
##          srmr_bentler   srmr_bentler_nomean                  crmr 
##                 0.059                 0.059                 0.064 
##           crmr_nomean            srmr_mplus     srmr_mplus_nomean 
##                 0.064                 0.059                 0.059 
##                 cn_05                 cn_01                   gfi 
##               113.901               126.971                 0.897 
##                  agfi                  pgfi                   mfi 
##                 0.849                 0.611                 0.699 
##                  ecvi 
##                 0.725
Click for explanation

We don’t have to do anything special here. We can estimate and summarize the second order CFA exactly as we did the first order CFA.


You should quickly notice something strange about the model fit statistics compared above. If you don’t see it, consider the following:

fitMeasures(fit_3f) - fitMeasures(fit_2nd)
##                  npar                  fmin                 chisq 
##                     0                     0                     0 
##                    df                pvalue        baseline.chisq 
##                     0                     0                     0 
##           baseline.df       baseline.pvalue                   cfi 
##                     0                     0                     0 
##                   tli                  nnfi                   rfi 
##                     0                     0                     0 
##                   nfi                  pnfi                   ifi 
##                     0                     0                     0 
##                   rni                  logl     unrestricted.logl 
##                     0                     0                     0 
##                   aic                   bic                ntotal 
##                     0                     0                     0 
##                  bic2                 rmsea        rmsea.ci.lower 
##                     0                     0                     0 
##        rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
##                     0                     0                     0 
##        rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
##                     0                     0                     0 
##                   rmr            rmr_nomean                  srmr 
##                     0                     0                     0 
##          srmr_bentler   srmr_bentler_nomean                  crmr 
##                     0                     0                     0 
##           crmr_nomean            srmr_mplus     srmr_mplus_nomean 
##                     0                     0                     0 
##                 cn_05                 cn_01                   gfi 
##                     0                     0                     0 
##                  agfi                  pgfi                   mfi 
##                     0                     0                     0 
##                  ecvi 
##                     0

The two models produce identical fit statistics! We also see that the degrees of freedom are identical between the two models. Hence, the two models have equal complexity.

This result taps into a critical idea in statistical modeling, namely, model equivalency. It turns out the two models we’re comparing here are equivalent in the sense that they are statistically indistinguishable representations of the data.

Since this is a very important idea, I want to spend some time discussing it in person. So, spend some time between now and the Week 6 lecture session thinking about the implications of this model equivalence. Specifically, consider the following questions:

  • What do we mean when we say that these two models are equivalent?
  • How is it possible for these two models to be equivalent when one contains an additional latent variable?
  • Why are the degrees of freedom equal for these two models?
  • Why are the fit statistics equal for these two models?

We’ll take some time to discuss these ideas in the Week 6 lecture session.


End of At-Home Exercises